Lambon Ralph, M. A., Jefferies, E., Patterson, Ok. & Rogers, T. T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18, 42–55 (2017).
Jefferies, E. The neural foundation of semantic cognition: converging proof from neuropsychology, neuroimaging and TMS. Cortex 49, 611–625 (2013).
Google Scholar
Abel, T. J. et al. Direct physiologic proof of a heteromodal convergence area for correct naming in human left anterior temporal lobe. J. Neurosci. 35, 1513–1520 (2015).
Google Scholar
Wittgenstein, L. Philosophical Investigations (Blackwell, 1953).
Lambon Ralph, M. A., Sage, Ok., Jones, R. W. & Mayberry, E. J. Coherent ideas are computed within the anterior temporal lobes. Proc. Natl Acad. Sci. USA 107, 2717–2722 (2010).
Google Scholar
Rogers, T. T. & McClelland, J. L. Semantic Cognition: A Parallel Distributed Processing Method (MIT Press, 2004).
Saffran, E. M. The group of semantic reminiscence: in help of a distributed mannequin. Mind Lang. 71, 204–212 (2000).
Google Scholar
Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. Ok. & Farah, M. J. Position of left inferior prefrontal cortex in retrieval of semantic information: a reevaluation. Proc. Natl Acad. Sci. USA 94, 14792–14797 (1997).
Google Scholar
Eggert, G. H. Wernicke’s Works on Aphasia: A Sourcebook and Evaluate (Mouton, 1977).
Patterson, Ok., Nestor, P. J. & Rogers, T. T. The place have you learnt what you already know? The illustration of semantic information within the human mind. Nat. Rev. Neurosci. 8, 976–987 (2007).
Google Scholar
Acosta-Cabronero, J. et al. Atrophy, hypometabolism and white matter abnormalities in semantic dementia inform a coherent story. Mind 134, 2025–2035 (2011).
Google Scholar
Warrington, E. Ok. Selective impairment of semantic reminiscence. Q. J. Exp. Psychol. 27, 635–657 (1975).
Google Scholar
Jefferies, E. & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparability. Mind 129, 2132–2147 (2006).
Google Scholar
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L. & Ungerleider, L. G. Discrete cortical areas related to information of coloration and information of motion. Science 270, 102–105 (1995).
Google Scholar
Wang, Y. et al. Dynamic neural structure for social information retrieval. Proc. Natl Acad. Sci. USA 114, E3305–E3314 (2017).
Google Scholar
Rosch, E., Mervis, C. B., Grey, W., Johnson, D. & Boyes-Braem, P. Fundamental objects in pure classes. Cogn. Psychol. 8, 382–439 (1976).
Murphy, G. L. & Medin, D. L. The position of theories in conceptual coherence. Psychol. Rev. 92, 289–316 (1985).
Google Scholar
Keil, F. C. in The Epigenesis of Thoughts: Essays on Biology and Cognition (eds Carey, S. & Gelman, R.) 237–256 (Lawrence Erlbaum Associates, 1991).
Barsalou, L. W. Perceptual image programs. Behav. Mind Sci. 22, 577–660 (1999).
Google Scholar
Gelman, S. A., Leslie, S. J., Was, A. M. & Koch, C. M. Kids’s interpretations of common quantifiers, particular quantifiers and generics. Lang. Cogn. Neurosci. 30, 448–461 (2015).
Google Scholar
Martin, A. & Chao, L. L. Semantic reminiscence and the mind: construction and processes. Curr. Opin. Neurobiol. 11, 194–201 (2001).
Google Scholar
Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Pure speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).
Google Scholar
McCrae, Ok., de Sa, V. R. & Seidenberg, M. S. On the character and scope of featural representations of phrase that means. J. Exp. Psychol. Gen. 126, 99–130 (1997).
Lambon Ralph, M. A., McClelland, J. L., Patterson, Ok., Galton, C. J. & Hodges, J. R. No proper to talk? The connection between object naming and semantic impairment: neuropsychological summary proof and a computational mannequin. J. Cogn. Neurosci. 13, 341–356 (2001).
Google Scholar
Farah, M. J. & McClelland, J. L. A computational mannequin of semantic reminiscence impairment: modality specificity and emergent class specificity. J. Exp. Psychol. Gen. 120, 339–357 (1991).
Google Scholar
Devereux, B. J., Clarke, A. & Tyler, L. Ok. Built-in deep visible and semantic attractor neural networks predict fMRI pattern-information alongside the ventral object processing pathway. Sci. Rep. 8, 10636 (2018).
Google Scholar
Binder, J. R. & Desai, R. H. The neurobiology of semantic reminiscence. Traits Cogn. Sci. 15, 527–536 (2011).
Google Scholar
Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. A neural foundation for lexical retrieval. Nature 380, 499–505 (1996).
Google Scholar
Damasio, A. R. & Damasio, H. in Computational Neuroscience: Massive-Scale Neuronal Theories of the Mind (eds Koch, C. & Davis, J. L.) 61–74 (MIT Press, 1994).
Mahon, B. Z. & Caramazza, A. A essential take a look at the embodied cognition speculation and a brand new proposal for grounding conceptual content material. J. Physiol. Paris 102, 59–70 (2008).
Google Scholar
Rogers, T. T. et al. Construction and deterioration of semantic reminiscence: a neuropsychological and computational investigation. Psychol. Rev. 111, 205–235 (2004).
Google Scholar
Lambon Ralph, M. A., Lowe, C. & Rogers, T. T. Neural foundation of category-specific semantic deficits for residing issues: proof from semantic dementia, HSVE and a neural community mannequin. Mind 130, 1127–1137 (2007).
Google Scholar
Binney, R. J., Embleton, Ok. V., Jefferies, E., Parker, G. J. M. & Lambon Ralph, M. A. The ventral and inferolateral features of the anterior temporal lobe are essential in semantic reminiscence: proof from a novel direct comparability of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb. Cortex 20, 2728–2738 (2010).
Google Scholar
Visser, M., Jefferies, E., Embleton, Ok. V. & Lambon Ralph, M. A. Each the center temporal gyrus and the ventral anterior temporal space are essential for multimodal semantic processing: distortion-corrected fMRI proof for a double gradient of data convergence within the temporal lobes. J. Cogn. Neurosci. 24, 1766–1778 (2012).
Google Scholar
Shimotake, A. et al. Direct exploration of the ventral anterior temporal lobe in semantic reminiscence: cortical stimulation and native area potential proof from subdural grid electrodes. Cereb. Cortex 25, 3802–3817 (2014).
Google Scholar
Matsumoto, R. et al. Practical connectivity within the human language system: a cortico-cortical evoked potential examine. Mind 127, 2316–2330 (2004).
Google Scholar
Pobric, G., Jefferies, E. & Lambon Ralph, M. A. Anterior temporal lobes mediate semantic illustration: mimicking semantic dementia by utilizing rTMS in regular contributors. Proc. Natl Acad. Sci. USA 104, 20137–20141 (2007).
Google Scholar
Pobric, G., Jefferies, E. & Lambon Ralph, M. A. Amodal semantic representations depend upon each anterior temporal lobes: proof from repetitive transcranial magnetic stimulation. Neuropsychologia 48, 1336–1342 (2010).
Google Scholar
Krizhevsky, A., Sutskever, I. & Hinton, G. E. in Advances in Neural Info Processing Techniques 1097–1105 (2012).
He, Ok., Zhang, X., Ren, S. & Solar, J. Deep residual studying for picture recognition. Preprint at arXiv https://arxiv.org/abs/1512.03385 (2015).
Chen, L., Lambon Ralph, M. A. & Rogers, T. T. A unified mannequin of human semantic information and its issues. Nat. Hum. Behav. 1, 0039 (2017).
Google Scholar
Kriegeskorte, N. Deep neural networks: a brand new framework for modeling organic imaginative and prescient and mind info processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015).
Google Scholar
Kell, A. J. E., Yamins, D. L. Ok., Shook, E. N., Norman-Haignere, S. V. & McDermott, J. H. A task-optimized neural community replicates human auditory behaviour, predicts mind responses, and divulges a cortical processing hierarchy. Neuron 98, 630–644 (2018).
Google Scholar
Plaut, D. C. Graded modality-specific specialisation in semantics: a computational account of optic aphasia. Cogn. Neuropsychol. 19, 603–639 (2002).
Google Scholar
Nelson, M. E. & Bower, J. M. Mind maps and parallel computer systems. Traits Neurosci. 13, 403–408 (1990).
Google Scholar
McNorgan, C., Reid, J. & McRae, Ok. Integrating conceptual information inside and throughout representational modalities. Cognition 118, 211–233 (2011).
Google Scholar
Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity evaluation—connecting the branches of programs neuroscience. Entrance. Syst. Neurosci. 2, 4 (2008).
Google Scholar
Dilkina, Ok. & Lambon Ralph, M. A. Conceptual construction inside and between modalities. Entrance. Hum. Neurosci. 31, 333 (2013).
Cohen, J. D., Dunbar, Ok. & McClelland, J. L. On the management of automated processes: a parallel distributed processing account of the Stroop impact. Psychol. Rev. 97, 332–361 (1990).
Google Scholar
Visser, M., Embleton, Ok. V., Jefferies, E., Parker, G. J. & Lambon Ralph, M. A. The inferior, anterior temporal lobes and semantic reminiscence clarified: novel proof from distortion-corrected fMRI. Neuropsychologia 48, 1689–1696 (2010).
Google Scholar
Rice, G. E., Hoffman, P. & Lambon Ralph, M. A. Graded specialization inside and between the anterior temporal lobes. Ann. N. Y. Acad. Sci. 1359, 84–97 (2015).
Google Scholar
Halai, A., Welbourne, S., Embleton, Ok. V. & Parkes, L. A comparability of dual-echo and spin-echo fMRI of the inferior temporal lobe. Hum. Mind Mapp. 35, 4118–4128 (2014).
Google Scholar
Chen, Y. et al. The ‘when’ and ‘the place’ of semantic coding within the anterior temporal lobe: temporal representational similarity evaluation of electrocorticogram knowledge. Cortex 79, 1–13 (2016).
Google Scholar
Marinkovic, Ok. et al. Spatiotemporal dynamics of modality-specific and supramodal phrase processing. Neuron 38, 487–497 (2003).
Google Scholar
Herbet, G., Zemmoura, I. & Duffau, H. Practical anatomy of the inferior longitudinal fasciculus: from historic reviews to present hypotheses. Entrance. Neuroanat. https://doi.org/10.3389/fnana.2018.00077 (2018).
Catani, M., Jones, D. Ok., Donato, R. & Ffytche, D. H. Occipito-temporal connections within the human mind. Mind 126, 2093–2107 (2003).
Google Scholar
Bajada, C. J., Banks, B. A., Lambon Ralph, M. A. & Cloutman, L. L. Reconnecting with Joseph and Augusta Dejerine: 100 years on. Mind 140, 2752–2759 (2017).
Google Scholar
Bouhali, F. et al. Anatomical connections of the visible phrase type space. J. Neurosci. 34, 15402–15414 (2014).
Google Scholar
Binney, R. J., Parker, G. J. M. & Lambon Ralph, M. A. Convergent connectivity and graded specialization within the rostral human temporal lobe as revealed by diffusion-weighted imaging probabilistic tractography. J. Cogn. Neurosci. 24, 1998–2014 (2012).
Google Scholar
Jung, J., Cloutman, L., Binney, R. J. & Lambon Ralph, M. A. The structural connectivity of upper order affiliation cortices displays human purposeful mind networks. Cortex 97, 221–239 (2016).
Google Scholar
Morton, J. & Patterson, Ok. in Deep Dyslexia (eds Patterson, Ok. et al.) 91–118 (Routledge and Kegan Paul, 1980).
Bozeat, S., Lambon Ralph, M. A., Patterson, Ok., Garrard, P. & Hodges, J. R. Non-verbal semantic impairment in semantic dementia. Neuropsychologia 38, 1207–1215 (2000).
Google Scholar
Rogers, T. T., Patterson, Ok., Jefferies, E. & Lambon Ralph, M. A. Problems of illustration and management in semantic cognition: results of familiarity, typicality, and specificity. Neuropsychologia 76, 220–239 (2015).
Google Scholar
Kuhnke, P., Kiefer, M. & Hartwigsen, G. Job-dependent recruitment of modality-specific and multimodal areas throughout conceptual processing. Cereb. Cortex 30, 3938–3959 (2020).
Google Scholar
Chiou, R., Humphreys, G. F., Jung, J. & Lambon Ralph, M. A. Managed semantic cognition depends upon dynamic and versatile interactions between the manager ‘semantic management’ and hub-and-spoke ‘semantic illustration’ programs. Cortex 103, 100–116 (2018).
Google Scholar
Martin, A. GRAPES—grounding representations in motion, notion, and emotion programs: how object properties and classes are represented within the human mind. Psychon. Bull. Rev. 23, 979–990 (2016).
Google Scholar
Bengio, Y. & Delalleau, O. in Worldwide Convention on Algorithmic Studying Principle (eds Kivinen, J. et al.) 18–36 (Springer, 2011).
Hochreiter, S. The vanishing gradient downside throughout studying recurrent neural nets and downside options. Int. J. Unsure. Fuzziness Knowl. Based mostly Syst. 06, 107–116 (1998).
Saxe, A. M., McClelland, J. L. & Ganguli, S. Precise options to the nonlinear dynamics of studying in deep linear neural networks. In Worldwide Convention on Studying Representations (eds Bengio, Y. & LeCun, Y.) (2014).
Bar, M. A cortical mechanism for triggering top-down facilitation in visible object recognition. J. Cogn. Neurosci. 15, 600–609 (2003).
Google Scholar
Bar, M. et al. Prime-down facilitation of visible recognition. Proc. Natl Acad. Sci. USA 103, 449–454 (2006).
Google Scholar
Noonan, Ok. A., Jefferies, E., Visser, M. & Lambon Ralph, M. A. Going past inferior prefrontal involvement in semantic management: proof for the extra contribution of dorsal angular gyrus and posterior center temporal cortex. J. Cogn. Neurosci. 25, 1824–1850 (2013).
Google Scholar
McKee, J. L., Riesenhuber, M., Miller, E. Ok. & Freedman, D. J. Job dependence of visible and class representations in prefrontal and inferior temporal cortices. J. Neurosci. 34, 16065–16075 (2014).
Google Scholar
Jackson, R. L., Cloutman, L. & Lambon Ralph, M. A. Exploring distinct default mode and semantic networks utilizing a scientific ICA method. Cortex 113, 279–297 (2019).
Google Scholar
Davey, J. et al. Exploring the position of the posterior center temporal gyrus in semantic cognition: integration of anterior temporal lobe with govt processes. NeuroImage 137, 165–177 (2016).
Google Scholar
Rohde, D. L. T. LENS: The Mild, Environment friendly Community Simulator Technical Report No. CMU-CS-99-164 (Carnegie Mellon College, Division of Laptop Science, 1999).
SPSS Statistics for Home windows v.25.0 (IBM, 2017).
Cloutman, L. L., Binney, R. J., Drakesmith, M., Parker, G. J. M. & Lambon Ralph, M. A. The variation of operate throughout the human insula mirrors its sample of structural connectivity: proof from in vivo probabilistic tractography. NeuroImage 59, 3514–3521 (2012).
Google Scholar
McIntosh, A. R. Mapping cognition to the mind by means of neural interactions. Reminiscence 7, 523–548 (1999).
Google Scholar